JM-4000 PERFORMANCE TEST RESULTS FEBRUARY, 1994

Total	Pounds	Melted	&	Superheated
				1

31,097#

Total Qty Natural Gas Used

Meter Reading (37,893 - 37,590) x 100

30,300 Ft.³

Total Btu's Used 30,300 Ft.³ x 1000 Btu/Ft.³

30,300,000 Btu

Total Cost to Melt 30.3 DTH x \$3.068/DTH

\$92.96

Cost Per Pound to Melt & Superheat \$92.96 ÷ 31,097#

\$0.0029

Ave. Btu/# 30,300,000 Btu ÷ 31,097#

974.4 Btu/#

Peak Melting Capacity - Ave. 2-1/4 Hrs.

= Approx. 4600#/Hr.

Energy Usage During Peak Melting

2-1/4 Hrs. 10,900,000 Btu ÷ 12,338#

= 883.4 Btu/#

Hours of Production 9:22 a.m. to 6:45 p.m.

Start of Melting to Completion of Stack Cleaning

= 9 hrs. 23 min.

Ave. Melt Rate for Total Hours

= 3315#/Hr.

Melt rate at steady state production level - furnace matching metal demand 11:35 a.m. to 5:00 p.m.

15,356# ÷ 5.5 Hr.

= 2792#/Hr.

Energy Usage at steady state conditions

Meter Reading 37,840 - 37,698 = 142

142 x 100 x 1000 Btu/Ft.3

= 14,200,000 Btu

14,200,000 Btu ÷ 15,365#

924 Btu/#

Total Material Removed from Furnace Bath including

Recoverable Metal in Dross

= 273#

=

Calculation/Summary
Performance Test Results
Page 2

Recoverable Metal Content of Dross @ 20%

 $273 \times 20\% = 54.6\#$

Total Dross Wt. 273 - 54.6 = 218.4#

Wt. of Flux Added = 8#

Dross Less Flux 218.4# - 8# = 210.4#

Dross, Aluminum Oxide (AL₂O₃) is 52.9% AL & 47.1% O₂

So, Total Metal Lost as Dross is:

 $210.4 \pm 52.9\%$ = 111.3#

<u>111.3# AL Lost</u> = .36% Melt Loss 31,097# Melted

Stack Temp. Range = $700^{\circ}\text{F} - 950^{\circ}\text{F}$